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1 Introduction

Integrability of both string and gauge theory sides of the AdS5/CFT4 correspondence plays

a very important role in exploring various aspects of the duality. In particular it leads to

an exact solution for certain all-loop quantities in N = 4 Yang-Mills theory [1, 2].

A new example of AdS4/CFT3 duality relating IIA string theory on AdS4 × CP
3

to N = 6 superconformal Chern-Simons theory has been proposed by Aharony, Bergman,

Jafferis and Maldacena [3] building on earlier work by Bagger, Lambert and Gustavsson [4–

8]. It provides a new arena for studying aspects of integrability on both sides of the

correspondence. On the string theory side, the worldsheet action for IIA on AdS4 × CP
3

has been constructed and its possible integrability has been explored in [9, 10, 12, 14–

17]. On the gauge theory side, two-loop integrability has been explored in [18–26] where

the corresponding spin chain has been constructed. An exact S-matrix has been proposed

in [27–30] and various tests of this new AdS4/CFT3 duality have been carried out in [17, 31–

35].

Even though string theory in the AdS5 × S5 background is classically integrable, ex-

plicitly solving worldsheet string theory at finite values of the coupling is a very difficult

problem. Perturbative study of the S-matrix of the full string worldsheet in AdS5×S5 has

been initiated in [37], where worldsheet scattering amplitudes in the light-cone gauge have

been calculated to leading order in perturbation theory and the supersymmetry realization

on scattering states has been analyzed. The truncation of the AdS5 × S5 string action to
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the near flat space limit and the calculation of its scattering amplitudes up to two loops

have been performed in [38–40].

Recently, Zarembo has studied the worldsheet S-matrix for the AdS4 × CP
3 sigma

model [17]. He proposed a solution to the mismatch between the number of degrees of

freedom present in the Bethe ansatz and in the sigma model by showing that, in the sigma

model Green functions, the position of the poles of the heavy modes is at the threshold

of producing two light particles and quantum corrections make this pole disappear. Thus,

the massive excitations “dissolve” in the continuum of light states, leaving only the light

states which fall into a representation of SU(2|2), which is also the symmetry group of

the S-matrix proposed in [28]. Zarembo also checked that the conjectured exact S-matrix

of AdS4/CFT3 duality agrees with the tree-level worldsheet calculations for the bosonic

four-point amplitudes.

Arutyunov and Frolov constructed a Lax connection for the AdS4 × CP
3 coset sigma

model, from which classical integrability follows [9]. Their construction of the Lax con-

nection is inspired by the earlier study of the AdS5 × S5 background in [41]. Integrability

implies the presence of higher conservation laws which, in turn, forbid particle production

in the scattering process and require S-matrix factorization (see [42]). In this paper we

will check by explicit calculations the absence of particle production in the AdS4 × CP
3

sigma model. We will do this by computing bosonic tree-level scattering amplitudes in

the gauge-fixed string action through six points. The gauge-fixed action contains a free

parameter a, which we will keep arbitrary throughout the computation. The S-matrix will

be a polynomial in a and the absence of particle production implies that all the coefficients

of this polynomial in a must vanish. This imposes stringent constraints on the a-dependent

parts of the action.

One can construct a formal argument for the classical integrability of the gauge-fixed

action. The initial action is classically integrable and gauge fixing proceeds by imposing a

set of first-class constraints which are compatible with the equations of motion and finally

eliminating the gauge degrees of freedom by using these constraints. The higher conserved

charges should descend to higher conserved charges on the reduced configuration space.

However, the gauge-fixing step is subtle so it is nice to be able to check explicitly that the

integrability survives. This paper provides such an explicit check.

Quantum integrability of strings in AdS5 ×S5 has been explored in [43], but quantum

integrability of the AdS4 × CP
3 model is less certain because, unlike the SO(N) models,

the CP
N models are known not to be integrable (see [44, 45]). Because of this, check-

ing the quantum integrability of this model is an important open problem. The on-shell

tree-level amplitudes computed in this paper could also be important as ingredients in the

unitarity method to construct amplitudes at loop level. The problem of quantum integra-

bility perhaps could be addressed in a simpler case, like the reduced near flat space action

constructed by Maldacena and Swanson [46] for the AdS5 × S5 theory. However, such a

reduced action has not been constructed yet for the AdS4 × CP
3 background (see [47] for

the bosonic part of the action). Although the fermion interactions should be fixed by su-

persymmetry, it would be interesting to also compute scattering amplitudes with fermions

explicitly. They will of course be very important at loop level.
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The paper is organized as follows. In section 2 we review the sigma model description

for strings in AdS4×CP
3, restricting to the bosonic fields. In section 3 we review the gauge

fixing procedure, working out the Lagrangian up to sixth order. In section 4 we present

our results for four-, five- and six-point bosonic scattering amplitudes, and demonstrate

the absence of particle production.

2 Sigma model description

In this section we review the construction of the worldsheet action for IIA string theory on

AdS4 × CP
3 as a super-coset

OSp(6|4)
SO(1, 3) × U(3)

(2.1)

following [9, 10, 17] and work it out in component fields up to the sixth order.

This coset sigma model is sufficient for quantizing the string around a background

where the string moves in the CP
3 directions. The full Green-Schwarz action for the Type

IIA background AdS4×CP
3 was constructed in [15] and its gauge fixing was studied in [16],

but for our purposes the coset approach will be sufficient.

Coordinates ξ on the coset supermanifold are defined by a coset representative g(ξ),

up to gauge transformations g(ξ) → g(ξ)h(ξ), where h(ξ) is an element of the SO(1, 3) ×
U(3) group while the global OSp(6|4) transformations act by multiplication from the left

g(ξ) → g′g(ξ). The building blocks of the worldsheet action are the left-invariant OSp(6|4)
currents, defined by

jµ(σ) = g−1(ξ(σ))∂µg(ξ(σ)). (2.2)

The Lie superalgebra osp(6|4) admits a Z4 grading (see [9, 10] for more details) under

which the left-invariant currents decompose as jµ = j
(0)
µ + j

(1)
µ + j

(2)
µ + j

(3)
µ , where the

superscript indicates the grading. The components j(0) and j(2) belong to the even part of

the superalgebra while the components j(1) and j(3) belong to the odd part of the superal-

gebra. The current j
(0)
µ takes values in the Lie algebra so(1, 3) × u(3) of the denominator

of the coset.

Using the Z4 grading we can easily see that the currents ji
µ with i = 1, 2, 3 transform

homogeneously under the gauge transformation g(ξ) → g(ξ)h(ξ), i.e. ji
µ → h−1ji

µh. Then,

the Lagrangian

L =

√
2λ

4
Str

(√
−hhµνj(2)

µ j(2)
ν + ǫµνj(1)

µ j(3)
ν

)

(2.3)

is invariant under both the gauge symmetry g(ξ) → g(ξ)h(ξ) and under the global symme-

try g(ξ) → g′g(ξ).1

We will be interested in the tree-level scattering of bosons, so let us truncate the theory

to its bosonic sector. The algebra in the denominator of the coset model is generated by

so(1, 3) × u(3) generators Ki, Ti and Rb
a, R

a, Ra, R, where i = 1, 2, 3 and a, b = 1, 2.2

The remaining generators Li,D complete the algebra so(1, 3) to so(2, 3) and Ba, Ba, J,M

1In the formula above one should not confuse h, the determinant of the worldsheet metric hµν , with the

element of the gauge group h(ξ).
2Here we use the same notations and conventions as in [17].
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complete the algebra u(3) to su(4). We present the commutation relations for all these

generators in appendix B.

In terms of these generators, the coset representative is given by

g = exp

(

tD +
i

2
ϕJ

)

exp

(

1√
2
XaBa +

1√
2
X̄aB

a +
1

2
ZM + Y iLi

)

, (2.4)

where the numerical factors have been chosen such that the fields will have the canonical

normalization in the action. This representative of the coset is adapted to the case where

the motion of the center of mass of the string is along the light-like geodesic t = ϕ. Upon

gauge fixing the fields t and ϕ will be eliminated and one will be left with eight transverse

bosonic degrees of freedom, given by the fields Xa, X̄a, Z and Y i.

Using the commutation relations in appendix B in the eq. (2.3) and expanding the

action in powers of the transverse fields Xa, X̄a, Z and Y i, we obtain the Lagrangian L
L =

∑

i

L(i), (2.5)

where

L(0) =
∂µϕ2

2
− ∂µt2

2
, (2.6a)

L(2) = ∂µX ·∂µX̄+
1

2
(∂µY ·∂µY )− 1

2
Y ·Y (∂µt)2+

∂µZ2

2
− 1

4

(

2Z2+X ·X̄
)

∂µϕ2, (2.6b)

L(3) = −1

2
iZ

(

X · ∂µX̄ − X̄ · ∂µX
)

∂µϕ, (2.6c)

L(4) =
1

6

(

X · ∂µX̄
)2 − 1

6
X̄ · ∂µXX · ∂µX̄ +

1

6

(

X̄ · ∂µX
)2 − 1

12
X · X̄∂µZ2 + (2.6d)

+
1

48

(

8Z2 + X · X̄
) (

Z2 + 2X · X̄
)

∂µϕ2 − 1

12

(

Z2 + 2X · X̄
)

∂µX · ∂µX̄ +

+
1

6
(Y · Y )(∂µY · ∂µY ) − 1

6
(Y · Y )2(∂µt)2 − 1

6
(Y · ∂µY )2 +

+
1

12
Z∂µZ∂µ(X · X̄),

L(5) =
1

8
iZ

(

Z2 + 2X · X̄
) (

X · ∂µX̄ − X̄ · ∂µX
)

∂µϕ, (2.6e)

L(6) =
1

1440

(

Z2 + 2X · X̄
)2 (

4∂µX · ∂µX̄ −
(

32Z2 + X · X̄
)

∂µϕ2
)

+ (2.6f)

+
1

360

(

Z2 + 2X · X̄
) (

−8
(

X · ∂µX̄
)2

+ 14∂µX · X̄X · ∂µX̄ −

−8
(

X̄ · ∂µX
)2

+ X · X̄∂µZ2 − Z∂µZ∂µ(X · X̄)
)

+

+
1

45
(Y · Y )2(∂µY · ∂µY ) − 1

45
(Y · Y )3(∂µt)2 − 1

45
(Y · Y )(Y · ∂µY )2.

The Lagrangian above can be written in the following generic form

L =
1

2

(

Gab∂µXa∂µXb + Gab∂µX̄a∂
µX̄b + Ga

b∂µX̄a∂
µXb + G a

b ∂µX̄a∂
µXb + (2.7)

+2GaZ∂µXa∂µZ + 2Ga
Z∂µX̄a∂

µZ + Gij∂µY i∂µY j + GZZ∂µZ∂µZ +

+2Gϕa∂µϕ∂µXa + 2G a
ϕ ∂µϕ∂µX̄a + 2GϕZ∂µϕ∂µZ +

+Gϕϕ∂µϕ∂µϕ − Gtt∂µt∂µt
)

,
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from which we can extract the components of the metric tensor up to the required order

Gab = (Gab)∗ =

(

1

3
− 2

45
Z2 − 4

45
X · X̄ + . . .

)

X̄aX̄b, (2.8a)

Ga
b = G a

b =

(

1−Z2

12
+

Z4

360
−X · X̄

6
+

1

90
Z2X ·X̄+

1

90
(X ·X̄)2+. . .

)

δa
b + (2.8b)

+

(

−1

6
+

7Z2

180
+

7X · X̄
90

+ . . .

)

XaX̄b,

Gij = δij +

(

1

3
+

2

45
Y · Y + . . .

)

(Y · Y δij − YiYj), (2.8c)

Gϕa = (G a
ϕ )∗ = iX̄a

(

Z

2
− Z3

8
− ZX · X̄

4
+ . . .

)

, (2.8d)

GZa = (G a
Z )∗ =

(

Z

12
− Z3

360
− ZX · X̄

180
+ . . .

)

X̄a, (2.8e)

GZZ = 1 − X · X̄
6

+
1

180
Z2X · X̄ +

1

90
(X · X̄)2 + . . . , (2.8f)

Gϕϕ = 1 − Z2 − X · X̄
2

+
Z4

3
+

17

24
Z2X · X̄ +

1

12
(X · X̄)2 − (2.8g)

− 2

45
Z6 − 43

240
Z4X · X̄ − 11

60
Z2(X · X̄)2 − 1

180
(X · X̄)3 + . . . ,

Gtt = 1 + Y · Y +
1

3
(Y · Y )2 +

2

45
(Y · Y )3 + . . . . (2.8h)

3 Gauge fixing

In this section we gauge-fix the action (2.7) derived in the previous section and work it out

in components up to the sixth order.

Let us start by reviewing following [17] the light-cone gauge fixing for the bosonic

string in the background

ds2 = −Gttdt2 + Gϕϕdϕ2 + 2GϕAdϕdxA + GABdxAdxB , (3.1)

where Gtt, Gϕϕ, GϕA and GAB are functions of xA.

We will consider the a-gauge, a one-parameter family of interpolating gauges intro-

duced in [48]. The temporal and light-cone gauges correspond to a = 0 and a = 1/2 re-

spectively.

Gauge-fixing can be done in several different but equivalent ways [17, 48–50]. A very

convenient approach is to use a trick where one T -dualizes first in a direction X− =

at− (1−a)ϕ, thereby replacing the coordinate X− with its T -dual coordinate ϕ̃. Then, by

integrating out the worldsheet metric we obtain a Nambu-Goto action. We can then use

the gauge-fixing conditions

X+ ≡ (1 − a)t + aϕ = τ, ϕ̃ = σ, (3.2)

– 5 –
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where (τ, σ) are worldsheet coordinates, we get the following gauge-fixed action (this for-

mula was used in [17] as the starting point for the worldsheet scattering computations):

LNG = − 1

(1 − a)2 Gϕϕ − a2Gtt

{[

(

GttGϕϕ + 2aGttGϕA∂0X
A − G̃AB∂0X

A∂0X
B

)

×
(

1 + G̃AB∂1X
A∂1X

B
)

+
(

aGttGϕA∂1X
A − G̃AB∂0X

A∂1X
B

)2
]1/2

− aGtt

1 − a
− (1 − a)GϕA∂0X

A

}

, (3.3)

where the metric G̃AB is

G̃AB =
[

(1 − a)2 Gϕϕ − a2Gtt

]

GAB − (1 − a)2 GϕAGϕB . (3.4)

After the gauge fixing the two bosonic sectors AdS4 and CP
3 become coupled. This

is similar to studies of classical strings where two otherwise separate bosonic sectors are

coupled through Virasoro constraints.

Expanding this Lagrangian to sixth order we get

L =
GAB

2
∂µXA∂µXB − Gtt

2
+

Gϕϕ

2
+ GϕA∂0X

A

+
1

4
(1 − GttGϕϕ)GAB

(

∂0X
A∂0X

B + ∂1X
A∂1X

B
)

+
1

4
(Gtt − 1)2 − 1

4
(Gϕϕ − 1)2

−1 − 2a

8
(Gtt − Gϕϕ)2 − 1 − 2a

8

(

GAB∂µXA∂µXB
)2

+
1 − 2a

4

(

GAB∂µXA∂νX
B

)2

−1

2
(a(Gtt − 1) + (1 − 2a)(Gϕϕ − 1))GϕAXA −

−a

2
GABGϕC(∂0X

A∂0X
B∂0X

C + ∂1X
A∂1X

B∂1X
C − 2∂0X

A∂1X
B∂1X

C)

−(1 − 2a)2

32

[

(Gtt − Gϕϕ)3 +
(

(Gtt − Gϕϕ) − 2GAB∂µXA∂µXB
)

×
(

2(GAB∂µXA∂νX
B)2 − (GAB∂µXA∂µXB)2

)

]

+

+
1−2a

8
(Gtt + Gϕϕ − 2)

[

(Gtt − Gϕϕ)2−(GAB∂0X
A∂0X

B)2+(GAB∂1X
A∂1X

B)2
]

+

+
1

32

[

(Gϕϕ − Gtt)(2(Gtt − 1)2 + 2(Gϕϕ − 1)2 + 3(2 − Gtt − Gϕϕ)2) −

−16GϕAGϕB∂µXA∂µXB +

+2(−2 + Gϕϕ + Gtt)
2(3GAB∂0X

A∂0X
B + GAB∂1X

A∂1X
B) +

+(Gϕϕ − Gtt)(2(GAB∂µXA∂νX
B)2 − (GAB∂µXA∂µXB)2)

]

+ . . . . (3.5)

Plugging in the components of the metric (2.8) worked out in the previous section,

we can easily obtain the gauge fixed Lagrangian up to sixth order. In order to tran-

scribe (2.8) into this formula we use GAB = {Gab, G
ab, Ga

b, G
a

b , Gij , GZZ , GZa, G
a
Z}, GϕA =

{Gϕa, G
a
ϕ, GϕZ} and XA = {Xa, X̄a, Y

i, Z}.
Let us present the fourth order gauge-fixed Lagrangian for the fields X, Y and Z.

Because the formulas are lengthy, we find it convenient to separate this Lagrangian into

– 6 –
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pieces, according to the field content.

L(4)
XXXX =

−5 + 6a

96
(X · X̄)2 +

1

6
(X · ∂µX̄)2 +

1

6
(∂µX · X̄)2 − 1

6
(X · ∂µX̄)(∂µX · X̄) +

+
1

12
X · X̄(∂0X · ∂0X̄ + 5∂1X · ∂1X̄) +

+
1 − 2a

2

[

−(∂µX · ∂µX̄)2 + (∂µX · ∂νX̄)2 + (∂µX · ∂νX̄)(∂νX · ∂µX̄)
]

, (3.6)

L(4)
Y Y Y Y =

−1 + 6a

24
(Y · Y )2 − 1

6
(Y · ∂µY )2 − 1

12
Y · Y (∂0Y · ∂0Y + 5∂1Y · ∂1Y ) +

+
1 − 2a

8

[

−(∂µY · ∂µY )2 + 2(∂µY · ∂νY )2
]

, (3.7)

L(4)
ZZZZ =

−5 + 6a

24
Z4 +

1

4
Z2

(

(∂0Z)2 + (∂1Z)2
)

+
1 − 2a

8
(∂µZ∂µZ)2, (3.8)

L(4)
XXY Y = −1 − 2a

8
X · X̄Y · Y − 1

2
Y · Y (∂0X · ∂0X̄ + ∂1X · ∂1X̄) +

+
1

8
X · X̄(∂0Y · ∂0Y + ∂1Y · ∂1Y ) +

+
1 − 2a

2

[

−(∂µX · ∂µX̄)(∂νY · ∂νY ) + 2(∂µX · ∂νX̄)(∂µY · ∂νY )
]

, (3.9)

L(4)
XXZZ = −1 − 6a

48
Z2X · X̄ − 1

12
Z∂µZ(∂µX · X̄ + X · ∂µX̄) +

+
1

12
Z2(5∂0X · ∂0X̄ + 7∂1X · ∂1X̄) +

1

24
X · X̄

(

(∂0Z)2 + 5(∂1Z)2
)

+

+
1 − 2a

2

[

−(∂µZ∂µZ)(∂νX · ∂νX̄) + 2(∂µZ∂νZ)(∂µX · ∂νX̄)
]

, (3.10)

L(4)
Y Y ZZ = −1−2a

4
Y ·Y Z2+

1

4
Z2(∂0Y ·∂0Y +∂1Y ·∂1Y ) − 1

4
Y ·Y

(

(∂0Z)2+(∂1Z)2
)

+

+
1 − 2a

4
[−(∂µY · ∂µY )(∂νZ∂νZ) + 2(∂µY · ∂νY )(∂µZ∂νZ)] . (3.11)

The full gauge-fixed fourth order Lagrangian is

L(4)
gf = L(4)

XXXX + L(4)
Y Y Y Y + L(4)

ZZZZ + L(4)
XXY Y + L(4)

XXZZ + L(4)
Y Y ZZ . (3.12)

For reasons of space we choose not to present the expression for the order five and six

Lagrangian. The higher order terms can be found by using eqs. (2.8) in the eq. (3.5). The

fourth order term (3.6) with four X fields was derived by Zarembo in [17].

4 Scattering amplitudes

In this section we will use the Feynman rules which follow from the Lagrangian derived

in the previous section to compute four-, five- and six-point scattering amplitudes at tree

level both analytically and numerically.

Except for non-vanishing four-point amplitudes, we adopt the convention that all mo-

menta are incoming and we parameterize the on-shell energy and momenta for the i-th

particle as follows

εi =
mi

2

(

ai +
1

ai

)

, pi =
mi

2

(

ai −
1

ai

)

. (4.1)

– 7 –
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Figure 1. The four-point master topologies. The first topology is the contact term, while the second

topology generates the s-, t- and u-channels by permutations of the external legs. Depending on

the external states, not all of the diagrams obtained by permutations of the external states will give

a non-vanishing contribution.

We will consider scattering amplitudes of X, Y and Z fields. As argued by Zarembo,

the Z are not expected to survive as physical states once α′ corrections are taken into

account. However, at tree level, which is the case we are interested in, the Z particles can

appear as asymptotic states and it makes sense to talk about their S-matrix. (There is

an interaction term (Xa
↔
∂ 0X̄a)Z in the Lagrangian but one can check that this interaction

vanishes on-shell so the field Z is stable at tree level. Therefore, at tree level, it makes sense

to include the Z states as asymptotic states.) Similar considerations apply to Y fields.

In the following sections we compute all bosonic four-, five- and six-point tree-level

amplitudes. In writing these amplitudes, we leave out the momentum conservation delta

function and the external leg factors 1√
2ǫ

. We compute only the connected part of the

amplitude. In several cases the amplitude can be simplified by using symmetric polynomials

(see appendix A for a toy model example).

4.1 Four-point amplitudes

The scattering amplitudes with four X fields have been computed in [17], so we will proceed

with the remaining cases.

X2Z2. In the case of XaX̄bZZ we denote the momenta by pi, with i = 1, . . . , 4, where

p1 and p2 are the momenta of the particles X and X̄, with ε2
1 − p2

1 = ε2
2 − p2

2 = 1/4 and p3

and p4 are the momenta of the particles Z, with ε2
3 − p2

3 = ε2
4 − p2

4 = 1. The corresponding

light-cone momenta ai must also satisfy momentum conservation

a1 + a2 + 2a3 + 2a4 = 0,
1

a1
+

1

a2
+

2

a3
+

2

a4
= 0. (4.2)

The expression for the XaX̄bZZ scattering amplitude obtained from the Feynman rules

computation is fairly complicated, but can be simplified by using momentum conservation
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Figure 2. The scattering of four Y fields. The indices i, j, k and l run from 1 to 3.

and on-shell conditions. One way of writing this amplitude is

iδa
b

{

(

−1 − (a3 + a4)
2 + a2

3a
2
4

4a3a4

)

c

+

(

−(a1 − a2)(a3 − a4)

16a3a4
+

1 − (a3 + a4)
2 + a2

3a
2
4

8a3a4

)

t

+

(

(a1 − a2)(a3 − a4)

16a3a4
+

1 − (a3 + a4)
2 + a2

3a
2
4

8a3a4

)

u

}

= 0,

(4.3)

where the c, t and u subscripts mark the contributions of the contact term and of the t-

and u-channels respectively. It is easy to see that all these contributions from different

Feynman diagrams cancel when added together.

Z4. The scattering amplitude for the ZZ → ZZ process is given by

S = 2i
(

(p2
1 + p2

2) + (1 − 2a)(p1ε2 − p2ε1)
2
)

, (4.4)

where (ε1, p1) and (ε2, p2) are the on-shell incoming momenta (ε2
i − p2

i = 1). Note that the

piece multiplying (1 − 2a) is Lorentz invariant, just like the interaction term in eq. (3.8).

Y 4. For the Y iY j → Y kY l scattering process in figure 2 the amplitude becomes

S = 4ip1p2(δ
ijδkl − δikδjl) − 2i

(

p2
1 + p2

2 − (1 − 2a)(p1ε2 − p2ε1)
2
)

δilδjk, (4.5)

where the momenta of the k and l fields are considered to be outgoing.

Remaining four-point amplitudes. We have also numerically checked that the scat-

tering processes Y iY jZZ and XaX̄bY
iY j vanish at several kinematic points.

4.2 Five-point amplitudes

X2Z3. In the XaX̄bZZZ scattering process we have three master topologies as illustrated

in figure 3. It is possible to obtain analytic results for all three classes of diagrams in terms

of symmetric polynomials. To this end we parameterize the momentum of the Z particles
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Figure 3. The five-point master topologies. All the five-point Feynman diagrams can be obtained

from these master topologies by permutation of external legs. The first topology yields a single

diagram, the second topology yields 10 diagrams and the third topology yields 15 diagrams.

by ai with i = 1, 2, 3, and the momentum of X, X̄ by a4 and a5 respectively. Conservation

of momentum then yields the constraints

2a1 + 2a2 + 2a3 + a4 + a5 = 0,
2

a1
+

2

a2
+

2

a3
+

1

a4
+

1

a5
= 0. (4.6)

The contributions of the three master topologies to the S-matrix are

(S1)
a
b = i (A + (1 − 2a)B) δa

b ,

(S2)
a
b = −i (A + C + (1 − 2a)B) δa

b ,

(S3)
a
b = i C δa

b , (4.7)

where

A =
s2
1 + 6s1s3 − s2 (s2 + 6)

8s3

(

1 − s3

s1s2

)1/2

,

B =
−s2

1 + 3s1s3 + s2 (s2 − 3)

8s3

(

1 − s3

s1s2

)1/2

,

C =
1

4s3

(

s3s
3
1+2s2

2s
2
1+s3

2

)

(

1 − s3

s1s2

)−1/2
{

(

7s2
2+6s2 − 3s2

3+3
)

s1s2s3+2s2
2

(

s2
2−3s2

3

)

+
(

3s2
2−2s2

3

)

s4
1+(2s2−7) s2s3s

3
1−

(

3s4
2+2s3

2−3
(

s2
3−1

)

s2
2+6s2

3s2−6s2
3

)

s2
1

}

, (4.8)

and si symmetric polynomials with respect to a1, a2, a3 variables. We can easily see that

the amplitude vanishes as expected, that is

(S1)
a
b + (S2)

a
b + (S3)

a
b = 0. (4.9)

X4Z. Another 5-point scattering process is XaX̄bX
cX̄dZ. If we parameterize Z with

a5 and Xa, X̄b,X
c, X̄d with a1, a2, a3, a4 the energy-momentum conservation imposes

the constraints

a1 + a2 + a3 + a4 + 2a5 = 0,
1

a1
+

1

a2
+

1

a3
+

1

a4
+

2

a5
= 0. (4.10)

Although we have analytic expressions for all three classes of master topologies as they

are shown in figure 3 we choose to explicitly show only the result for the contact term
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Figure 4. The seven six-point master topologies. These topologies contribute 1, 15, 10, 60, 45, 90

and 15 diagrams respectively. In total there are 236 diagrams. Depending on the external states

not all the topologies or all the diagrams belonging to a given topology contribute to the scattering

amplitude.

interaction. Then the sum of the second and third of the diagrams in figure 3 precisely

cancels the contact term yielding zero as expected. The contact term contribution to the

scattering is

(S1)
ac
bd = i

a

32

{

((r2−1) r3+r1 (r4−1)) (r2+r4)

r2r4
δa
b δc

d+
(t1 (t3−1)−t2 (t4−1)) (t3+t4)

t3t4
δa
dδc

b

}

,

(4.11)

where

r1 = a1 − a2, r2 = a1a2, r3 = a3 − a4, r4 = a3a4,

t1 = a1 − a4, t4 = a1a4, t2 = a2 − a3, t3 = a2a3.

Remaining five-point amplitudes. We have also numerically checked that the scatter-

ing processes Y iY jY kY lZ, Y iY jZZZ and XaX̄bY
iY jZ vanish at several kinematic points.

4.3 Six-point amplitudes

Z6. The energy-momentum conservation gives

6
∑

i=1

ai =
6

∑

i=1

1

ai
= 0. (4.12)

For this scattering process it turns out that only the first and third class of master topologies

in figure 4 contribute and that they precisely cancel each other. The contact term of this
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scattering is given by

S1 =−i
(s2+4) s4+(4s2+7) s6

4s6
− 3i(1−2a)

(

s2+
s4

s6
+10

)

−i
(1−2a)2

(

9s2
3−17s2s4+81s6

)

4s6
.

(4.13)

We have analytically checked that the sum of all the diagrams vanishes for this process.

X2Z4. For the XaX̄bZZZZ scattering process we parameterize the momenta of X, X̄

with a1, a2 and the momenta of the our Z’s with a3, a4, a5, a6. Then the energy-momentum

conservation gives the constraints

a1 + a2 + 2a3 + 2a4 + 2a5 + 2a6 = 0,
1

a1
+

1

a2
+

2

a3
+

2

a4
+

2

a5
+

2

a6
= 0. (4.14)

The contact term that is canceled by the Feynman diagrams (2) through (7) in figure 4

can be written in terms of symmetric polynomials in the a3, a4, a5, a6 as

(S1)
a
b =

i

16s1s3s2
4

(

1

9
A +

1

3
B(1 − 2a) + C(1 − 2a)2

)

δa
b , (4.15)

where

A = 18s1s
3
3 −

(

9 (s2 − 3) s1s2 +
(

224s2
1 + 9 (s2 + 2)

)

s3

)

s4s3

−18s2
1s

3
4 + s1

((

18s2
1 + 27s2 + 560

)

s3 − 9s1s2

)

s2
4,

B = s3s4 (−2s2 + 3s4 + 9) s3
1 +

(

4s4

(

7s2
3 − 3s2

4

)

+ s2

(

12s2
3 (s4 + 1) − s2

4

))

s2
1

+
(

(−2s2 + 9s4 + 3) s2
3 + 4s4 (5s4 − 2s2 (s2 + 3s4 + 3))

)

s1s3 − (s2 + 12) s2
3s4,

C =
(

−10s3s
2
1 + s2

2s1 + 5s2s3

)

s4s3

+
(

8s3s
3
1 − 4s2

2s
2
1 − 3s2

3

)

s2
3 +

(

−3s3
1 + 5s2s1 − 16s3

)

s1s
2
4. (4.16)

We have numerically checked at several random kinematic points that the sum of all

the diagrams vanishes for this process.

X4Z2. For the XaX̄bX
cX̄dZZ case we parameterize the momentum of the particles with

the order appearing with a1, a2, a3, a4, a5, a6. The conservation of momentum gives the two

constraints

a1 + a2 + a3 + a4 + 2a5 + 2a6 = 0,
1

a1
+

1

a2
+

1

a3
+

1

a4
+

2

a5
+

2

a6
= 0. (4.17)

Then the contact term is

(S1)
ac
bd =

i

64r2r4r6

(

1

45
Ar +

1

3
Br(1 − 2a) + Cr(1 − 2a)2

)

δa
b δc

d

+
i

64t2t4t6

(

1

45
At +

1

3
Bt(1 − 2a) + Ct(1 − 2a)2

)

δa
dδc

b , (4.18)
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where

Ar = −98r4r6r
2
1 − (30r3r6 + r4 (r5 (15 − 4r6) − 2r3r6)) r1 − 15r4r6 (3r4 + 3r6 − 10)

−r2

(

98r6r
2
3 + (r5 (15 − 4r6) − 2r1r6) r3 + r2

4 (45 − 150r6) + 15r6 (3r6 − 10)
)

−r2r4

(

122r2
5 + r3 (15r6 − 4) r5 − 60r2

6 − 750r6 + r1 (30r3r6 + r5 (15r6 − 4)) − 60
)

−r2
2 (r4 (45 − 150r6) + 45r6) − 30

√

r2
1 − 4r2

√

r2
3 − 4r4 (−5r4 + r2 (3r4 − 5) + 3) r6,

Br = 3
(

r6r
2
4 +

(

r2
6 + 1

)

r4 + r6

)

r2
1 +

(

r5r
2
4 + 2r3r

2
6

)

r1 + 3r4r
2
5 − 8r4r

2
6 + 3r2

3r6 − 2r2
4r6

−12r4r6 + r3r4r5r6 + r2
2

(

3r6r
2
3 + r5r3 + r4

(

3r2
5 − 12r6 − 8

)

− 2r6

)

+6
√

r2
1 − 4r2

√

r2
3 − 4r4

(

r2
6 + r2r4

)

+ r2

(

3
(

r2
6 + 1

)

r2
3 + 2r1r4r3 + 3r2

5 − 8r2
6

)

+r2

(

r2
4

(

3r2
5 − 12r6 − 8

)

+ r1r5r6 − 12r6 − 12r4

(

r2
6 − r6 + 1

))

,

Cr = −
(

r2
4+r2

6

)

r2
1−r2

4r
2
5−r2

3r
2
6+r4r

2
6+r2

4r6+r2
2

(

−r2
3−r2

5+r4+r6

)

+r2

(

r2
4−6r6r4+r2

6

)

,

(4.19)

a variable with a t subscript is the same as the corresponding one with a r subscript but

with the polynomials ri replaced with the polynomials ti, and

r1 = a1 + a2, r2 = a1a2, r3 = a3 + a4, r4 = a3a4, r5 = a5 + a6, r6 = a5a6,

t1 = a1 + a4, t2 = a1a4, t3 = a2 + a3, t4 = a2a3, t5 = a5 + a6, t6 = a5a6.

We have numerically checked at several random kinematic points that the sum of all

the diagrams vanishes for this process.

X6. For the XaX̄bX
cX̄dX

eX̄f case we parameterize the momentum of the particles with

the order appearing with a1, a2, a3, a4, a5, a6. The conservation of momentum gives the two

constraints
6

∑

i=1

ai =

6
∑

i=1

1

ai
= 0. (4.20)

Then the contact term for the special case a = c = e, b = d = f is

(S1)
aaa
bbb = i

(

5A + 30(1 − 2a)B + 45(1 − 2a)2C
)

δa
b , (4.21)

where

A = s2

(

t2
(

9
(

8s2+125
)

u2+9
(

s2+8
)

−638su+144t2u
2
)

+144su
)

+144s2
2t2u

2+144st2u,

B = s2

(

8t2
(

s2 − 14su + 18u2
)

+ t22
(

−3su + 9u2 + 8
)

+ s(s(8su − 3) + 9u)
)

+s2
2t2

(

−3su + 9u2 + 8
)

+ st2(s(8su − 3) + 9u),

C = 4s2t2 (2su − t2) − 4s2
2

(

s2 − 2t2
)

+ s2

(

8s3u + t2
(

s2 − 38su + 8t2 + 45u2
))

, (4.22)

with s1, s2, s3 symmetric polynomials in the a1, a3, a5 variables and t1, t2, t3 symmetric

polynomials in the a2, a4, a6 variables under the constraints

s1 = −t1 = s, s3/s2 = −t3/t2 = u. (4.23)

We have numerically checked at several random kinematic points that the sum of all

the diagrams vanishes for all processes involving six fields.
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Remaining six-point amplitudes. We have also numerically checked that the

scattering processes XaX̄bX
cX̄dY

iY j , XaX̄bY
iY jZZ, XaX̄bY

iY jY kY l, Y iY jZZZZ,

Y iY jY kY lZZ and Y iY jY kY lY mY n vanish at several kinematic points.

4.4 Comments on factorization of six-point amplitudes

When we computed the scattering amplitudes above, we considered generic kinematics

and showed that the five- and six-point scattering amplitudes vanish. However, for some

special kinematics, the amplitudes turn out to be non-vanishing. This happens when one

of the internal lines goes on-shell and the naive amplitude becomes infinite. In this case,

we need to keep track of the iǫ prescription for the propagators. The propagators can then

be written as
i

p2 − m2 + iǫ
= p.v.

i

p2 − m2
+ πδ(p2 − m2), (4.24)

by using the Sokhotskyi-Plemelj formula.

Using this formula, we can check that the principal value part cancels when summing all

the diagrams, as for the case of generic kinematics (to show this rigorously we should scatter

wave-packets instead of states with sharply defined momenta). However, while the principal

value part cancels in the sum of all the diagrams, in some cases the delta function survives.

It is easy to show that the five-point amplitude will always vanish, since, at the kine-

matic point where one internal propagator goes on-shell, the amplitude factorizes into a

four-point and a three-point amplitude. If the states are stable at tree-level, the on-shell

three-point amplitude must vanish. Therefore, the term containing the delta function in

the expansion of the propagator also vanishes.

At six points, one can find a non-vanishing amplitude but with an extra delta function.

In the case of a 3 → 3 scattering with all particles having equal masses, the set of outgoing

momenta is the same as the set of incoming momenta. This should also hold for a n → n

scattering, in which case the scattering amplitude contains n delta functions.
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A A toy model

Before studying scattering in the AdS4 ×CP
3 sigma model which is the main focus of this

paper, it worthwhile to look at a simpler model which has similar features.

The Tzitzéica model3 is an integrable model with one real bosonic field, which has

three-point interactions, just like the AdS4 × CP
3 sigma model. This model, just like

3This model is sometimes called Bullough-Dodd or Zhiber-Shabat model after the names of the authors

who studied it in [53, 54].
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its cousin the sinh-Gordon model, could have been discovered by studying their tree-level

scattering. As described in [51, 52] one can show that the n-point tree-level scattering

amplitudes can be made to vanish for n > 4 by adding higher-point contact interactions to

the Lagrangian. Moreover, these interactions are tightly constrained by the requirement

that the scattering amplitudes vanish. By proceeding in this way one finds two models,

the sinh-Gordon model, with Lagrangian

L =
1

2
(∂φ)2 − m2

β2
(cosh(βφ) − 1), (A.1)

and the less-known Tzitzéica model with Lagrangian

L =
1

2
(∂φ)2 − m2

6β2

(

e2βφ + 2e−βφ − 3
)

= (A.2)

=
1

2
(∂φ)2 − 1

2
m2φ2 − 1

3!
λφ3 − 1

4!

3λ2

m2
φ4 + . . . , (A.3)

where λ = βm2.

Let us show the vanishing of the five-point scattering amplitude in the Tzitzéica model.

Instead of starting with the action in eq. (A.2), we will start with some arbitrary couplings

λk in the action

L =
1

2
(∂φ)2 − 1

2
m2φ2 −

∞
∑

k=3

λk

k!
φk. (A.4)

and show that λ3, λ4 and λ5 should be related as in eq. (A.3).

For the five-point scattering process there are 26 Feynman diagrams one needs to sum

over, but they can all be obtained from the three five-point master topologies in figure 3 by

permuting the external labels. The diagrams are naturally organized into classes according

to their parent topologies and the sum of all the diagrams belonging to a given class has

the full permutation symmetry of the amplitude.

In the following we will use the light-cone momenta, which for an on-shell particle,

ε2
i = p2

i + m2, are defined by

ai =
1

m
(εi + pi),

1

ai
=

1

m
(εi − pi). (A.5)

We will therefore express the amplitude in terms of the light-cone momenta ai, instead

of the usual momentum components (εi, pi). If the theory is parity invariant, then pi →
−pi or equivalently ai → a−1

i is a symmetry of the scattering amplitudes. The Lorentz

transformations act multiplicatively on the light-cone momenta ai → tai, where t is a real

number different from zero.

Now, if we use the fact that the sum of every class of Feynman diagrams which originate

in the same master topology should be symmetric under the exchange of external momenta

we conclude by using the fundamental theorem of symmetric polynomials that it can be

represented in terms of elementary symmetric polynomials. The elementary symmetric

polynomials for n variables xi, with i = 1, . . . , n are defined by

sk =
∑

1≤i1<...<ik≤n

xi1 . . . xik , (A.6)
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for k = 1, . . . , n. So we will express the amplitude in terms of symmetric polynomials

of light-cone momenta ai. The advantage of using the light-cone momenta ai is twofold:

first, these variables solve the on-shell conditions and second, the momentum conservation

imposes the constraints s1 = 0 and sn−1 = 0 for n-point scattering. In this language the

parity symmetry acts by sk → sn−k

sn
, with 1 ≤ k ≤ n and the convention s0 = 1.

When reducing the sum of diagrams to symmetric polynomials and using the momen-

tum conservation conditions s1 = 0 and sn−1 = 0, the results simplify dramatically. For

example, for the Tzitzéica model, the sum of the 10 diagrams corresponding to the second

topology of figure 3 yields the result

iλ3λ4

m2

2s2s3 − 5s5

s2s3 − s5
, (A.7)

while the 15 diagrams corresponding to the third topology of figure 3 yield

− iλ3
3

m4

s2s3 − 10s5

s2s3 − s5
. (A.8)

Adding also the contribution of the five-point contact interaction, we get the following

amplitude

− iλ5 +
iλ3λ4

m2

2s2s3 − 5s5

s2s3 − s5
− iλ3

3

m4

s2s3 − 10s5

s2s3 − s5
, (A.9)

which vanishes when

λ4 = 3
λ2

3

m2
, λ5 = 5

λ3
3

m4
, (A.10)

which are precisely the relations one obtains by expanding the Lagrangian in eq. (A.2).

Let us perform a counting of the number of degrees of freedom for a n-point scattering

amplitude. The n on-shell momenta have 2n components from which we have to subtract

n on-shell constraints, two momentum conservation constraints and one constraint from

Lorentz invariance (if the theory is Lorentz invariant). Therefore, a n-point scattering

process in two dimensions is characterized by n − 3 parameters if the theory is Lorentz

invariant and by n − 2 parameters if the theory is not Lorentz invariant (in section 4 we

deal with a theory which is not Lorentz invariant).

Let us first consider the case of theories which are not Lorentz invariant. In this

case, the n− 2 parameters characterizing the kinematics can be taken to be some complex

numbers s2, . . . , sn−2, sn (note that in the sequence above s1 and sn−1 are missing). Starting

with these n − 2 numbers we form the degree n equation

(−x)n + 0(−x)n−1 + s2(−x)n−2 + . . . + sn−2(−x)2 + 0(−x) + sn = 0. (A.11)

The n solutions of this equation are the light-cone momenta ai, with i = 1, . . . , n. In

other words, the quantities si are the elementary symmetric polynomials in the light-cone

momenta ai, by Viète’s formulas.

In the case of a Lorentz invariant theory, a Lorentz transformation acting as ai → tai

for all i, transforms the quantities sk as sk → tksk. One can then eliminate a further

parameter by this rescaling.
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In section 4 we use the considerations in this appendix to obtain analytic expressions

for some tree-level topologies. However, there we do not have a full symmetry for some

of the amplitudes, because the masses of the fields are not all equal. Even in these cases,

it will prove useful to use the partial symmetry in some of the particles to express their

kinematics in terms of symmetric polynomials. In the case of a theory with several particles

of different masses, it might be helpful to study affine Toda theories as toy models, but we

will not attempt this here.

B Commutation relations of the so(2, 3) × su(4) algebra

Here we present the non-vanishing commutation relations of the bosonic generators of the

superalgebra osp(6|4). These commutation relations are taken from [17], but we include

them here to make the paper self-contained.

The commutation relations of the u(3) subalgebra are:

[Ra
b , R

c
d] = δa

dRc
b − δc

bR
a
d, [Ra

b , R
c] = δa

b Rc − δc
bR

a, [Ra
b , Rc] = −δa

b Rc + δa
c Rb,

[Ra, Rb] = δa
b (Rc

c − R) − Ra
b , [R,Ra] = −Ra, [R,Ra] = Ra.

The commutation relations of the so(1, 3) subalgebra are:

[Ti, Tj ] = ǫijkTk, [Ti,Kj ] = ǫijkKk, [Ki,Kj ] = −ǫijkTk.

The remaining commutation relations for the su(4) algebra are

[Ra
b , B

c] = −δc
bB

a, [Ra, B
b] = 1

2δb
a(J − M), [R,Ba] = −Ba,

[Ra
b , Bc] = δa

c Bb, [Ra, Bb] = 1
2δa

b (J + M), [R,Ba] = Ba,

[Ra
b , J ] = δa

b M, [Ra, J ] = Ba, [Ra, J ] = Ba,

[Ra
b ,M ] = δa

b J, [Ra,M ] = −Ba, [Ra,M ] = Ba,

[Ba, Bb] = δa
b R + Ra

b , [Ba, J ] = Ra, [Ba,M ] = Ra,

[Ba, J ] = Ra, [Ba,M ] = −Ra, [J,M ] = −2Ra
a.

The remaining commutation relations for the so(2, 3) algebra are

[Ki, Lj ] = −δijD, [Ti, Lj ] = ǫijkLk, [Ki,D] = −Li,

[Li, Lj ] = −ǫijkTk, [Li,D] = Ki.

The conjugation properties of the generators are

(Rb
a)

† = Ra
b , (Ra)† = Ra, R† = R, (Ba)† = −Ba,

J† = J, M † = −M, D† = −D,

(Li)
† = −Li, (Ki)

† = −Ki, (Ti)
† = −Ti.

Finally, the invariant bilinear form needed in eq. (2.3) is defined by (we only write the

generators which we need in the expansion)

StrBaBb = δa
b , StrJ2 = −2, StrM2 = 2, StrLiLj =

1

2
δij , Str D2 = −1

2
.

– 17 –
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